Some Ideas for Ensemble Kalman Filtering
نویسنده
چکیده
In this seminar we show clean comparisons between EnKF and 4D-Var made in Environment Canada, briefly describe the Local Ensemble Transform Kalman Filter (LETKF) as a representative prototype of Ensemble Kalman Filter, and give several examples of how advanced properties and applications that have been developed and explored for 4D-Var can be adapted to the LETKF without requiring an adjoint model. Although the Ensemble Kalman Filter is less mature than 4D-Var, its simplicity and its competitive performance with respect to 4D-Var suggest that it could become the method of choice.
منابع مشابه
A Local Least Squares Framework for Ensemble Filtering
Many methods using ensemble integrations of prediction models as integral parts of data assimilation have appeared in the atmospheric and oceanic literature. In general, these methods have been derived from the Kalman filter and have been known as ensemble Kalman filters. A more general class of methods including these ensemble Kalman filter methods is derived starting from the nonlinear filter...
متن کامل4d Ensemble Kalman Filtering for Assimilation of Asynchronous Observations
A 4-dimensional ensemble Kalman filter method (4DEnKF), which adapts ensemble Kalman filtering to the assimilation of observations that are asynchronous with the analysis cycle, is discussed. In the ideal case of linear dynamics between consecutive analyses, the algorithm is equivalent to Kalman filtering assimilation at each observation time. Tests of 4DEnKF on the Lorenz 40 variable model are...
متن کاملCombining geostatistics and Kalman filtering for data assimilation in an estuarine system
Data assimilation (DA) has been applied in an estuarine system in order to implement operational analysis in the management of a coastal zone. The dynamical evolution of the estuarine variables and corresponding observations are modelled with a nonlinear state-space model. Two DA methods are used for controlling the evolution of the model state by integrating information from observations. Thes...
متن کاملModeling and prediction of environmental data in space and time using Kalman filtering
The Kalman filter is used in this paper as a framework for space time data analysis. Using Kalman filtering it is possible to include physically based simulation models into the data analysis procedure. Attention is concentrated on the development of fast filter algorithms to make Kalman filtering feasible for high dimensional space time models. The ensemble Kalman filter and the reduced rank s...
متن کاملAdaptive Methods in Numerical Weather Prediction
Ensemble Kalman Filtering is a sequential Monte Carlo method commonly used in meteorology to track atmospheric states and make numerical weather predictions (NWP). With the intent to introduce statisticians to this important area of application we address some of the practical aspects of the ensemble Kalman Filter in dynamic systems. We focus on three topics related to NWP: extending the ensemb...
متن کامل